1MWh集装箱储能技术方案及应用
一、储能集装箱的解决方案
1 微网储能解决方案
集成电池、BMS、变流器、智能切换柜、EMS等核心部件全部放在一个集装箱里面,40英尺的集装箱就可以做到。这种一体式的解决方案可以应用在储能电站的调峰、调频,或者梯次电池的利用,应急供电的场合及一些削峰填谷的商业应用等方面。
2 电站储能解决方案
储能电站整个系统的搭建规模比较大,个人建议将PCS和电池部分分开,单独放置在一个集装箱里面,这样在维护及电池的通风散热方面会比较合理。
3机柜式储能解决方案
这种一体化的储能解决方案适用于小型的商业储能应用,将PCS和电池模组全部放置在一个机柜里面,整个系统的占用空间就比较小。
二、1MWh储能集装箱的设计
1MWh储能集装箱的设计主要分为两部分:1、电池仓:电池仓主要包括1MWh的电池、电池架、BMS控制柜、七氟丙烷灭火柜、散热空调、烟感照明、监控摄像头等。电池需要配备相对应的BMS管理系统。电池的类型可以是铁锂电池、锂电池、铅炭电池及铅酸电池。铅酸电池的能量密度偏低,而且体积较大,标准的40英尺的集装箱可能没办法放下,目前主流的标配设计是1MWh的磷酸铁锂电池。散热空调根据仓里的温度进行实时调节。监控摄像头可以远端监控仓里设备的运行状态。最终可以组成一个远程的客户端,通过客户端或者app对仓里设备的运行状态、电池状态等进行监测和管理。2、设备仓:设备仓主要包括PCS和EMS控制柜。PCS可控制充电和放电过程,进行交直流的变换,在无电网情况下可以直接为交流负荷供电。EMS在储能系统的应用里面,功能和作用都比较重要。在配电网方面,EMS主要通过跟智能电表的通讯,采集电网实时功率的状态,并实时监测负载功率的变化。控制自动发电,对电力系统状态的安全性进行评估。1MWh的系统里面,PCS和电池的比例可以是1:1或者1:4(储能PCS250kWh,电池1MWh)。
1MW集装箱式变流器散热设计采用前进分后出风的设计,这种设计适用于将所有PCS全部放置在同一个集装箱的储能电站。
将集装箱内部配电系统的走线、维护通道及散热设计整体一体化优化设计,便于远距离运输,减少事后维护的成本。
三、标准MW储能方案的组成
标准MW储能方案将电池、BMS、PCS和EMS做集成处理,系统多以PCS为核心的基础设备,通过集成电池、BMS、EMS,提供定制化、一站式储能解决方案。
储能微网成为能源互联网关键基础设施
一、储能微网在能源互联网中的作用
储能和互联网存在一一对应的关系。储能中的能量对应的就是互联网中的数据;电池就是所说的储能,对应的就是互联网中的缓存;储能变流器双向变换设备对应互联网中路由器的作用;储能中的微电网就相当于局域网;所有数据和设备加在一起组成了能源互联网,相当于互联网的构造。
二、储能的应用
1、发电侧:解决弃风弃光,平抑波动。目前局部地区的弃风率达到10%-15%,弃光率达到15%-20%。在发电侧配套储能,可以平稳发电,对电网的冲击也会减少很多。
2、电网侧:参与电网的调频,提升稳定性。目前调频市场有些地方采用火电来调频,但是火电调频响应的时间和周期比较长。储能输出功率的变化非常快,一般在10秒内就可以响应,储能调频相比之下比较有优势。
3、用户侧:能量存储,削峰填谷,赚取峰谷电价差。
三、储能微网发展中面临的困难与挑战
目前整个储能市场处于不温不火的状态,主要有两方面的原因:一是政策与成本方面。国家对电动汽车的政策补贴是非常大的,所以对储能系统或者电池做补贴之后,整个系统的造价就会降低,初始投资减少,系统的收益就会增加。二是技术层面。首先在主动配电网的发展方面还存在制约因素和技术难度;在能源管理技术探索方面还有待摸索;微网和大电网的协调优化运行技术有待提高;在储能变流器的电网适应性及对电网的支撑技术方面,对储能PCS厂家有技术要求和门槛。人认为政策与成本这块是目前的主要问题。
四、储能微网发展的机会与机遇
1、光伏、风电高渗透率对电网稳定性的挑战。研究发现光伏发电最高渗透率一般不超过25%-50%,否则电网可能会出现电压升高、有云层变化引起的电压波动、有低电压和频率波动引起的大范围脱网等问题。
2、电改激活了用户侧储能市场。随着储能成本进一步下降,峰谷电价制度完善、尖峰电价制定、需求侧管理等补偿机制建立、电力市场用户侧多种增值服务开展等电改政策红利的显现,用户侧的储能市场将成为储能在我国实现商业化应用的主要领域之一。
3、随着电动汽车市场的急剧爆发,有效地进行动力电池的回收和实现电池的梯次利用成为了新能源汽车发展的重要课题之一,并已被提上了日程,未来汽车电池的市场非常大。
4、光储充微网系统具有投资价值。它是一种综合利用绿色能源的能源管理和配置方案,具有很高的经济和环保效益。