多分支储能技术在梯次电池利用中的优势
一、梯次利用的关键技术
对于电动汽车退役的动力电池梯次利用,一般需要经过以下过程:退役电池的回收、电池PACK拆解成为单体电芯、电池筛选及性能分类、电池重新成组为梯次利用电池模组或PACK、池均衡维护检测
动力电池退役时,是整个pack从车上拆解下来的。不同的车型有不同的电池pack设计,其内外部结构设计,模组连接方式,工艺技术各不相同,意味着不可能用一套拆解流水线适合所有的电池pack和内部模组。那么,在电池拆解方面,就需要进行柔性化的配置,将拆解流水线进行分段细化,针对不同的电池pack,在制定拆解操作流程时,要尽可能复用现有流水线的工段和工序,以提高作业效率,降低重复投资。
梯次利用,最合理的应该是拆解到模组级,而不是电芯级,因为电芯之间的连接通常都是激光焊接或其他刚性连接工艺,要做到无损拆解,难度极大,考虑成本和收益,得不偿失。
二、梯次利用的关键技术
1、PCS采用模块化多分支解决方案,可以更好的减少电池组的并联数。每路电池之间充电、放电互不影响。
多分支技术解决的痛点:1、消除由于不同的电池组并联之间产生的环流问题。2、减少电池梯次利用后复杂的筛选环节,降低梯次电池重新使用的成本,以提高梯次电池的回收效率和利用价值。3、可以接入不同电池厂家的电池,提高系统灵活性。2、BMS采用主动均衡技术方案,可以最大化的对电池进行均衡的保护。
三、技术优势
1、储能PCS模块化设计稳定度高,单模故障不影响其他模块工作,模块生产方便,快速高效。
2、在用户价值方面,系统可带电进行模块增减更换维护,10分钟内可完成单个模块更换;模块化冗余并联避免了资源浪费;支持多种能源接入,方便灵活。
3、采用高效的三电平拓扑技术,增加零电平变换,IGBT耐压为两电平一半,开关损耗小;三电平具有更高开关频率,输出滤波电感减小;三电平多一层阶梯电压,输出电流波形更接近正弦波,谐波含量小,功率因数0.99。功率因素方面,从-1到1是可以随意调节的。
4、独立散热设计,模块采用分层结构,将主控中心和主要发热器件隔离;采用独立风道,确保风腔有足够的风压,相比于混合风道,热设计更优。
光储充一体化技术应用探讨
光储充典型的应用模式是交流微网模式,其主要架构包括交流母线、光伏、充电桩、储能和电池等,系统可以并网运行,也可以离网运行。系统还可以配备并离网切换设备做无缝切换的设计。
光储充的应用未来会发展成多能互补的状态,后期不仅有光伏、储能,还有热负荷、热泵、分布式能源等接入到这个系统,逐渐演变成为一个庞大的微网系统。
凡注明“来源:中国综合能源服务网”的所有作品,版权均属本网,转载时请署名来源。如因作品内容、版权及其它问题请及时与本网联系。